Data Entry Creatinine Clearance/GFR Dosing/target level guidelines Pharmacokinetic parameters Dose calculation Calculate pharmacokinetic parameters Math:
Derivation of dose calculations
Math:
Calculating pharmacokinetic parameters
References
Data Entry
Weight: (kg) (lb) %IBW
Height: (cm) (in)
Sex: M F     Age: (yr)
Race: African/Caribbean Other
Serum creatinine: mg/dL
Derived anthropometric data
Ideal Body Weight: IBWDev
Adjusted Body Weight: ABW
Body Mass Index: BMIQuet
Body Surface Area: BSAMos
Creatinine Clearance
Cockcroft-GaultCG 62.5 ml/min
(74.3 ml/min/1.73 m²)
The Cockcroft-Gault equation is used in most vancomycin dosing situations. An alternative (e.g., Salazar-Corcoran) might be considered in patients who are obese.
JelliffeJelliffe 62.2 ml/min
Salazar-CorcoranSC 72.2 ml/min
eGFR
Original MDRD Levey(1999) 84.2 ml/min/1.73 m²
Re-expressed MDRDLevey(2006) 79.1 ml/min/1.73 m²
refit MDRD, chronic kidney diseaseRule 95.5 ml/min/1.73 m²
refit MDRD, white + healthyRule 101.9 ml/min/1.73 m²
refit MDRD, quadraticRule 110.3 ml/min/1.73 m²
WrightW 76.4 ml/min
MartinM 69.3 ml/min
CKD-EPILevey(2009) 87.4 ml/min/1.73 m²
Suggested initial dosing & target trough levels
Nosocomial pneumonia15 mg/kg q12h 15-20 mcg/ml***ATS/IDSA
Endocarditis15 mg/kg q12h 10-15 mcg/mlAdjust for trough 30-45 mcg/mlAmerican Heart Association
***12-15 mg/kg5-15 mcg/ml Dosing interval determined by CrCl:
>80: q12h;
40-79: q24h;
25-29: q48h;
<25: dose by trough level
Columbia
Line-related infection (non-MRSA)
Non-CNS Abscess, drained
Febrile neutropenia, no pathogen identified
Loading dose: 20 mg/kg
Maintenance dose: 15 mg/kg
8-15 mcg/mlDosing interval based on CrClKingston General
MRSA
Prosthetic joint infection
Osteomyelitis
S. Aureus pneumonia
CNS infection
15-20 mcg/ml
***Loading dose: 25 mg/kg
Maintenance dose: 19 mg/kg
Peak: 30 mcg/ml
Trough: 7.5 mcg/ml
Use nomogram to adjust dose interval
(~1440/CrCl, h)
Matzke
NondialysisLoading dose: 20-25 mg/kg10-15 mcg/mlPeak: 20-30 mcg/mlPierce
Pneumonia, dialysis15-20 mcg/ml
General15 - 18 mg/kg5 - 15Initial dosing based on actual body weight:
Reduce dose by 250mg for weight over 120kg
Reduce dose by 500mg for weight over 200kg
Maximum dose 3000mg
St Luke
Concurrent aminoglycoside15 mg/kg5-10
Infected Hardware
Diabetic Foot
Osteomyelitis
Endocarditis
Pneumonia &
concurrent aminoglycoside
Severe Infections
Community acquired pneumonia
18 mg/kg10-15
Leukemia
Pneumonia
(ventilator-associated, hospital-acquired, healthcare-associated)
20 mg/kg15-20
Vancomycin Pharmacokinetic Parameters
(using Cockcroft-Gault)
Select Kel, h -1 t1/2, h Cl, ml/min Vd, L Comments Reference
*** *** *** *** Uses Salazar-Corcoran to determine CrCl for obese patients
Uses IBW to calculate Vd in patients >130% IBW
Bauer
*** *** *** *** - Birt
*** *** *** *** Different pharmacokinetics for patients with hematologic malignancies Buelga
*** *** *** *** Better predictor than Rushing in patients weighing within 120% IBW (Lee et al) Leonard
*** *** *** *** Loading dose of 25 mg/kg;
subsequent doses of 19 mg/kg;
dosing interval nomogram provided
Matzke
*** *** *** ***
*** *** *** *** Loading dose 20-25 mg/kg ABW Pierce
*** *** *** *** Suggests dose (mg/kg/24h) of
0.227*CrCl (ml/min/70kg) + 5.67
Rodvold
*** *** *** *** Better predictor than Leonard in patients
weighing > 120% IBW (Lee et al)
Rushing
*** *** *** *** Patients with serum creatinine < 1.5 mg/dL Vance-Bryan
*** *** *** ***
Select pharmacokinetic parameters and estimate dose
Selected kel (h-1): Dosing
interval, h
68121618243648
Selected Vd (L): Dose, mg************************
Nominal infusion rate (mg/hr): Infusion
time, min
***************************
Goal Ctrough (mcg/ml): Predicted
Ctrough, mcg/ml
***************************
Predicted
Cpeak, mcg/ml
***************************
Calculate pharmacokinetic parameters from observed levels
Cpeak (mcg/ml) kel = h-1
Ctrough (mcg/ml)
Dose (mg Vd = L
Infusion time (min)
Dosing interval (hr)
Calculating dose from pharmacokinetic parameters
The differential equation determining drug concentration, C during an continuous infusion, assuming first order elimination, is given by:
where k0 = infusion rate, mass/time
Vd = volume of distribution, volume
kel = elimination constant, 1/time
(1)Equation 1
The solution to this equation is given by:
where C0 = concentration at the beginning of the infusion
(2)Equation 2
The differential equation determining first order elimination is: (3)Equation 3
And the corresponding solution is: (4)Equation 4
For intermittent infusion of dose D over time tinf given at time interval τ with initial concentration 0:
Substituting D/tinf for k0 in (2), define C':
(5)Equation 5
Assume C(0) = 0. Then define C'' = C(tinf)
[at the end of 1st infusion]
(6)Equation 6
Let τ be the dosing interval. C(τ) is then:
[just prior to 2nd infusion]
(7)Equation 7
C(τ + tinf)
[end of 2nd infusion]
(8)Equation 8
C(2τ)
[prior to 3d infusion]
(9)Equation 9
C(2τ + tinf)
[end of 3d infusion]
(10)Equation 10
C(nτ + tinf)
[end of nth infusion]
(11)Equation 11
For sufficiently large n, the right-hand numerator term of equation (11) ≈ 0, and,
substituting for C'' from (6) and then for C' from (5), the steady state peak level is obtained:
(12)Equation 12
And the steady state trough level is: (13)Equation 13
Vancomycin is customarily infused at a fixed rate, d', 1000 mg/1 hour.
If D/d' is substituted for tinf in equation (13), terms can be rearranged to solve for D(τ, kel, Vd, d'):
(14)Equation 14
Equation (14) can also be solved for τ if fixed dose D is specified: (15)Equation 15
Determining pharmacokinetic parameters from drug levels
If a peak, as well as a trough level are available, pharmacokinetic parameters can be directly calculated.
From (12) and (13):
(16)Equation 16
Solving for kel: (17)Equation 17
Substituting this kel back into (13): (18)Equation 18
References
  1. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anethesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111:3167-3184. <http://circ.ahajournals.org/cgi/reprint/111/23/e394>
  2. American Thoracic Society: Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005;171:388-416. <http://ajrccm.atsjournals.org/cgi/reprint/171/4/388>
  3. Bauer LA. Vancomycin. In: Applied clinical pharmacokinetics. New York: McGraw Hill, Medical Publishing Division; 2001:180-261. Preview
  4. Birt JK, Chandler MH. Using clinical data to determine vancomycin dosing parameters. Ther Drug Monit 1990 Mar;12(2):206-9. Abstract
  5. Buelga DS, del Mar Fernandez de Gatta M, Herrera EV, Dominguez-Gil A, Garcia MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob Agents Chemother 2005 Dec;49(12):4934-41
    <http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1315926>
  6. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16:31-41
  7. Columbia University Medical Center. Vancomycin Dosing and Monitoring in Adults. <http://www.cumc.columbia.edu/dept/id/downloads/Vancomycin_5-26-05.pdf>
  8. Devine BJ. Gentamicin therapy. Drug Intell Clin Pharm. 1974; 8:650-5.
  9. Jelliffe RW. Creatinine clearance: bedside estimate [Letter to the Editor]. Ann Intern Med 1973; 79: 604-605.
  10. Kingston General Hospital. Vancomycin Guidelines for Dosing and Monitoring in Adults. Drug Information Bulletin 2006; 39(2): 1-4.<http://www.kgh.on.ca/pharmacy/diBulletinApr2006.pdf>
  11. Lee E, Winter ME, Boro MS. Comparing two predictive methods for determining serum vancomycin concentrations at a Veterans Affairs Medical Center. Am J Health Syst Pharm 2006 Oct 1;63(19):1872-5.
    <http://www.ajhp.org/cgi/reprint/63/19/1872>
  12. Leonard AE, Boro MS, Vancomycin pharmacokinetics in middle-aged and elderly men. Am J Hosp Pharm. 1994; 51:798-800. Abstract
  13. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group Ann Intern Med 1999 Mar 16; 130 (6): 461-70.
  14. Levey AS, Coresh J, Greene T. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006 Aug 15;145(4):247-54.
  15. Levey AS, Stevens LA, Schmid C, Zhang Y, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. 2009 May 5;150(9):604-12. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763564/pdf/nihms132246.pdf>
  16. Martin L, Chatelut E, Boneu A, Rostaing L, Roussilhes C, Caselles O, Canal P. Improvement of the Cockcroft-Gault equation for predicting glomerular filtration rate in cancer patients. Bull Cancer 1998 Jul;85(7) 631-6. Abstract
  17. Matzke, GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob. Agents Chemother. 1984; 25:433-437. <http://aac.asm.org/cgi/reprint/25/4/433>
  18. Mosteller RD: Simplified Calculation of Body Surface Area. N Engl J Med 1987 Oct 22;317(17):1098 (letter)
  19. Pierce, M. Vancomycin Dosing: Overview of Dosing Charts. <http://prodruginfo.com/Formulary/P&TReviews/Vancomycin_Dosing_Chart_Intranet.pdf>
  20. Pierce, M. Vancomycin Pharmacokinetic Dosing: Analysis of Patient Data and Optimization of Kinetic Parameters. June 2007.
    <http://prodruginfo.com/Formulary/DUE/Vancomycin%20Pharmacokinetic%20Dosing%20DUE.pdf>
  21. Rodvold KA, Blum RA, Fischer JH et al. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother 1988; 32:848-52.
    <http://aac.asm.org/cgi/reprint/32/6/848>
  22. Quetelet A. Recherches sur le poids de l'homme aux different ages. In: Nouveaux Memoire de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles. (1832) t. VII.
  23. Rushing TA, Ambrose PJ. Clinical application and evaluation of vancomycin dosing in adults. J Pharm Technol 2001; 17:33-8. Abstract
  24. Rule AD, Larson TS, Bergstralh EJ, et al. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann.Intern.Med (2004) 141:929-937. <http://www.annals.org/content/141/12/929.full.pdf>
  25. St Luke's Hospital/Mercy Medical Center: Vancomycin Protocol. <www.crjointpt.com/library/Vancomycin%20(2.2).doc>
  26. Salazar DE, Corcoran GB: Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med 84: 1053-1060, 1988 Abstract
  27. Vance-Bryan K, Guay DRP, Gilliland SS, Rodvold KA, ROtschafer JC. Effect of Obesity on Vancomycin Pharmacokinetic Parameters as Determined by Using a Bayesian Forecasting Technique. Antimicrob. Agents Chemother. 1993; 37(3):436-440.
    <http://aac.asm.org/cgi/reprint/37/3/436.pdf>
  28. Wright JG, Boddy AV, Highley M et al. Estimation of glomerular filtration rate in cancer patients. Br J Cancer 2001; 84: 452-459.
    <http://www.nature.com/bjc/journal/v84/n4/pdf/6691643a.pdf>